Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Burcu Arslan, ${ }^{\text {a* }}$ Canan Kazak, ${ }^{\text {a }}$ Bahittin Kahveci, ${ }^{\text {b }}$ Erbil Ağar ${ }^{\text {c }}$ and Selami Sasmaz ${ }^{\text {b }}$

${ }^{\text {a }}$ Department of Physics, Ondokuz Mayis University, TR-55139, Samsun, Turkey,
${ }^{\mathbf{b}}$ Department of Chemistry, Rize Art and Science Faculty, Karadeniz Teknik University, Rize, Turkey, and ${ }^{\text {c }}$ Department of Chemistry, Ondokuz Mayis University, TR-55139, Samsun, Turkey

Correspondence e-mail: nbarslan@ttnet.net.tr

Key indicators

Single-crystal X-ray study
$T=293 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.003 \AA$
R factor $=0.037$
$w R$ factor $=0.115$
Data-to-parameter ratio $=15.6$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2004 International Union of Crystallography Printed in Great Britain - all rights reserved

4-Amino-3-p-chlorobenzyl-4,5-dihydro-1,2,4-triazol-5-one

The title compound, $\mathrm{C}_{9} \mathrm{H}_{9} \mathrm{ClN}_{4} \mathrm{O}$, possesses a triazole ring, which is a typically planar six- π-electron partially aromatic system, and displays the characteristic features of a 1,2,4triazole derivative. In the crystal structure, symmetry-related molecules are linked by intermolecular $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{N}-$ $\mathrm{H} \cdots \mathrm{N}$ hydrogen bonds.

Comment

Triazole ring systems are typically planar six- π-electron partially aromatic systems, and 1,2,4-triazole and its derivatives are used as starting materials for the synthesis of many heterocycles (Desenko, 1995). In addition to having extensive chemical significance (Benson, 1967; Temle, 1981), the 1,2,4triazole nucleus is also associated with diverse pharmacological properties, such as analgesic, anti-asthmatic, diuretic, fungicidal, bactericidal, anti-inflammatory and pesticidal activities (Bennur et al., 1976; Webb \& Parsons, 1997; Heubach et al., 1980; Mohammed et al., 1993; Yüksek, 1992).

The crystal structure of the title compound, (I), is illustrated in Fig. 1 and selected bond distances are given in Table 1. The dihedral angle between the planes of the triazole and benzene rings is $65.92(6)^{\circ}$. The maximum deviations from planarity are 0.0096 (9) \AA for atom N 2 in ring $\mathrm{C} 8-\mathrm{N} 3$ and 0.0078 (10) \AA for atom C 1 in ring $\mathrm{C} 1-\mathrm{C} 6$.

(I)

The chloro and triazole linkages distort the $\mathrm{C}-\mathrm{C}$ bond lengths of the benzene ring, giving bond lengths in the range 1.367 (3) -1.383 (2) \AA. The $\mathrm{Cl} 1-\mathrm{C} 4$ bond distance

Figure 1
A view of (I), with the atom-numbering scheme and 50% probability displacement ellipsoids.

Received 12 February 2004
Accepted 10 March 2004
Online 24 March 2004

Figure 2
A packing diagram of (I), viewed approximately along the c axis, with the hydrogen bonds shown as dashed lines.
[1.744 (2) \AA] is similar to the distance $[1.735$ (3) \AA] found in another compound that contains a triazole and a benzene ring (Kumaran et al., 1999). The C8=N1 bond length [1.292 (2) A] is comparable to those for similar bonds in the literature (Ocak, Çoruh et al., 2003; Puviarasan et al., 1999; Liu et al., 1999; Zhu et al., 2000). The $\mathrm{C} 9=\mathrm{O} 1$ bond length [1.2373 (18) \AA] agrees with the $\mathrm{C}=\mathrm{O}$ bond length [1.234 (3) Å] found in similar structures (Ocak, Kahveci et al., 2003).

In the crystal structure, symmetry-related molecules are linked by $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{N}-\mathrm{H} \cdots \mathrm{N}$ hydrogen bonds; details are given in Table 2 and Fig. 2.

Experimental

Ethyl-p-chlorophenylacetoxycarbonyl hydrazone ($2.845 \mathrm{~g}, 0.01 \mathrm{~mol}$) was dissolved in water (50 ml) with stirring. Hydrazine hydrate $(1.25 \mathrm{ml})$ was added, and the mixture was refluxed for 5 h . The reaction mixture precipitated a product at 273 K over a period of 12 h . The product was filtered off and then recrystallized from ethanol (m.p. 454 K ; yield $2 \mathrm{~g}, 90 \%$).

Crystal data

$$
\begin{aligned}
& \mathrm{C}_{9} \mathrm{H}_{9} \mathrm{ClN}_{4} \mathrm{O} \\
& M_{r}=22.45 \\
& \text { Monoclinic, } P 2_{1} / c \\
& a=7.1316(6) \AA \\
& b=21.225(2) \AA \\
& c=7.1164(6) \AA \\
& \beta=110.770(6){ }^{\circ} \\
& V=1007.19(15) \AA^{3} \\
& Z=4
\end{aligned}
$$

Data collection

Stoe IPDS-II diffractometer

ω scans

Absorption correction: by integra-
tion (X-RED; Stoe \& Cie, 1996)
$T_{\text {min }}=0.873, T_{\text {max }}=0.938$
13749 measured reflections
2320 independent reflections

Refinement

[^0]$D_{x}=1.482 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
Mo $K \alpha$ radiation
Cell parameters from 14661 reflections
$\theta=1.9-27.5^{\circ}$
$\mu=0.36 \mathrm{~mm}^{-1}$
$T=293$ (2) K
Prism, colourless
$0.38 \times 0.36 \times 0.18 \mathrm{~mm}$

1710 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.042$
$\theta_{\text {max }}=27.5^{\circ}$
$h=-9 \rightarrow 9$
$k=-27 \rightarrow 27$
$l=-9 \rightarrow 9$

$$
\begin{aligned}
& \begin{array}{l}
w=1 /\left[\sigma^{2}\left(F_{o}{ }^{2}\right)+(0.0752 P)^{2}\right. \\
\quad+0.0064 P] \\
\quad \text { where } P=\left(F_{o}{ }^{2}+2 F_{c}^{2}\right) / 3 \\
(\Delta / \sigma)_{\max }=0.001 \\
\Delta \rho_{\max }=0.27 \mathrm{e} \AA^{-3} \\
\Delta \rho_{\min }=-0.34 \mathrm{e} \AA^{-3} \\
\text { Extinction correction: } S H E L X L 97 \\
\text { Extinction coefficient: } 0.047(6)
\end{array}
\end{aligned}
$$

Table 1
Selected interatomic distances (\AA).

$\mathrm{O} 1-\mathrm{C} 9$	$1.2373(18)$	$\mathrm{Cl} 1-\mathrm{C} 4$	$1.7436(17)$
$\mathrm{N} 1-\mathrm{C} 8$	$1.292(2)$		

Table 2
Hydrogen-bonding geometry ($\AA{ }^{\circ},{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 2-\mathrm{H} 22 \cdots \mathrm{O}^{\mathrm{i}}$	$0.92(2)$	$1.93(2)$	$2.8037(17)$	$158.3(18)$
$\mathrm{N} 4-\mathrm{H} 44 A \cdots \mathrm{~N}^{\mathrm{ii}}$	$0.90(2)$	$2.65(2)$	$3.327(2)$	$133.6(17)$
$\mathrm{N} 4-\mathrm{H} 44 B \cdots \mathrm{O} 1^{\mathrm{iii}}$	$0.90(2)$	$2.09(2)$	$2.976(2)$	$169(2)$

Symmetry codes: (i) $1-x, 1-y, 2-z$; (ii) $1-x, 1-y, 1-z$; (iii) $2-x, 1-y, 2-z$.

H atoms attached to atoms C2, C3, C5 and C6 were treated using a riding model, with $\mathrm{C}-\mathrm{H}=0.93 \AA$ and $U_{\text {iso }}(\mathrm{H})=1.5 U_{\text {eq }}(\mathrm{C})$. Other H atoms were refined isotropically. The calculated $\mathrm{C}-\mathrm{H}$ bond lengths were in the range $0.93-0.97 \AA$.

Data collection: X-AREA (Stoe \& Cie, 1996); cell refinement: $X-A R E A$; data reduction: X-RED (Stoe \& Cie, 1996); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

References

Bennur, S. C., Jigajinni, V. B. \& Badiger, V. V. (1976). Chem. Abstr. 85, 94306.
Benson, F. R. (1967). Tetrazoles, Tetrazines and Purines and Related Ring Systems, Heterocyclic Compounds, Vol. 8, edited by R. C. Elderfield, pp.1106. New York: Wiley.

Desenko, S. M. (1995). Khim. Geterotsikl. Soedin. (Chem. Heterocycl. Compd.), pp. 2-24.
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
Heubach, G., Sachse, B. \& Buertstelli, H. (1980). Chem. Abstr. 92, 181200h.
Kumaran, D., Ponnuswamy, M. N., Jayanthi, G., Ramakrishnan, V. T., Chinnakali, K. \& Fun, H.-K. (1999). Acta Cryst. C55, 581-582.
Liu, Y.-F., Chantrapromma, S., Shanmuga Sundara Raj, S., Fun H.-K., Zhang, Y.-H., Xie, F.-X., Tian, Y.-P. \& Ni, S.-S. (1999). Acta Cryst. C55, 93-94.

Mohammed, E. A., El-Deen, I. M., Ismail, M. M. \& Mohamed, S. M. (1993). Indian J. Chem. Sect. B, 32, 933-937.
Ocak, N., Çoruh, U., Kahveci, B., Şaşmaz, S., Ağar, E., Vazquez-Lopez, M. \& Erdönmez, A. (2003). Acta Cryst. E59, o750-o752.
Ocak, N., Kahveci, B., Şaşmaz, S., Ağar, E. \& Erdönmez, A. (2003). Acta Cryst. E59, o1137-o1138.
Puviarasan, K., Govindasamy, L., Shanmuga Sundara Raj, S., Velmurugan, D., Jayanthi, G. \& Fun, H.-K. (1999). Acta Cryst. C55, 951-953.
Sheldrick, G. M. (1997). SHELXL97 and SHELXS97. University of Göttingen, Germany.
Stoe \& Cie (1996). X - $A R E A$ and $X-R E D$. Stoe \& Cie GmbH, Darmstadt, Germany.
Temle, C. (1981). In The Chemistry of the Heterocyclic Compounds, Vol. 34. New York: Wiley Interscience.
Webb, M. A. \& Parsons, J. H. (1997). Chem. Abstr. 86, 117870w.
Yüksek, H. (1992). PhD thesis, Karadeniz Teknik University, Trabzon, Turkey.
Zhu, D.-R., Xu, Y., Liu, Y.-J., Song, Y., Zhang, Y. \& You, X.-Z. (2000). Acta Cryst. C56, 242-243.

[^0]: Refinement on F^{2}
 $R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.037$
 $w R\left(F^{2}\right)=0.115$
 $S=1.03$
 2320 reflections
 149 parameters
 H atoms treated by a mixture of independent and constrained refinement

